Technical Report
CMU/SEI-88-TR-30
ESD-TR-88-31

—
o

= Carnegie-Mellon University
=— Software Engineering Institute

An OOD Paradigm for Flight
Simulators, 2nd Edition

Kenneth J. Lee
; Michael S. Rissman
’ Richard D’Ippolito
Charles Plinta
Roger Van Scoy
December 1987, First Edition
’ September 1988, Second Edition

ADA2LOYg Ug

Technical Report

CMU/SEI-88-TR-30
ESD-TR-88-31

December 1987, First Edition
September 1988, Second Edition

An OOD Paradigm for Flight
Simulators, 2nd Edition

|'|"|'|"l'|

Kenneth J. Lee
Michael S. Rissman
Richard D’Ippolito
Charles Plinta
Roger Van Scoy

Dissemination of Ada Software Engineering Technology

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEl Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Nesovwe (R,
Kart H. Shingler
SE! Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1988 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Govemment
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on ordering,
please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce, Springfield, VA 22161.

Esg of any trademark in this publication is not intended in any way to infringe on the rights of the trademark
older.

Table of Contents

1. Introduction 3
1.1. Abstract/Background 3
1.2. Motivation 3
1.3. Characteristics of the Application Domain 4
1.4. Reader’s Guide 5

2. Approach 7
2.1. History 4
2.2. Design Goals 8

2.2.1. Nested objects 8
2.2.2. Object dependencies 8
2.3. Evolution of the Paradigm 9

3. Concepts Used by the Paradigm 11

3.1. Overview of the Software Architecture 12
3.1.1. The Executive Level 12
3.1.2. The System Level 14
3.1.3. Overall Software Architecture 14

4. Paradigm Description 17
4.1. Engine Description s
4.2. Engine Object Diagram 17
4.3. Object Abstraction 21

4.3.1. Object Managers 21
4.3.2. Object Manager Structure 22
4.3.3. Object Manager Operations 24
4.3.4. Advantages of the Object Abstraction 26

4.4, Connection Abstraction 27
4.4.1. Overview of Connections 27
4.4.2. Procedural Abstraction 28

4.4.2.1. Get Needed Information 28
4.4.2.2. Convert Information 29
4.4.2.3. Put Converted Information 31

CMU/SEI-88-TR-30 i

4.4.3. Advantages of Connections
4.5. System Abstraction
4.5.1. System Aggregates
4.5.1.1. Building an Aggregate
4.5.2. Updating
4.5.3. Advantages of Systems
4.6. Executives
4.6.1. Implementation of an Executive
4.6.2. Advantages of Executives

4.7. Advantages of the Architecture of the Paradigm

. Development Process
5.1. Role of the Paradigm

5.2. Templates and Reuse
5.2.1. Diagram Parsers

5.3. Enhancements to Object Diagrams

(9]

6. Open Issues
6.1. Distributed Processing
6.2. Tuning
6.3. Reposition and Flight Freeze
6.4. System Exports and System Imports
6.5. Our Executive’s Control of Time
6.6. Cyclicness
6.7. Load Balancing
6.8. Generics
6.9. System-Level Objects

7. Electrical System
7.1. Additional Concepts

Appendix A. Software Architecture Notation
Appendix B. Object Manager Template

Appendix C. Engine code
C.1. Package Global_Types
C.2. Package Standard_Engineering Types
C.3. Package Bleed_Valve_Object_Manager
C.4. Package Burner_Object_Manager
C.5. Package body Burner_Object_Manager
C.6. Package Diffuser_Object_Manager
C.7. Package Engine_Casing Object_Manager
C.8. Package Exhaust_Object_Manager
C.9. Package Fan_Duct_Object_Manager

ii

CMU/SEI-88-TR-30

C.10.
G,
C.12.
C.13.
C.14.
C.15.
C.16.
GC.17.

C.18.
C.19.
C.20.

Package Rotorl_Object_Manager

Package Rotor2_Object_Manager

Package Flight_Executive

Package body Flight_Executive

Package Flight_System_Names

Package Flight_Executive_Connection_Manager
Package body Flight_Executive_Connection_Manager

Separate Procedure body _
Process_External_Connections_To_Engine_System

Package Engine_System
Package body Engine_System
Package Engine_System_Aggregate

9%
101
104
105
107
108
109
110

112
114
116

CMU/SEI-88-TR-30

iii

iv

CMU/SEI-88-TR-30

List of Figures

Figure 2-1: Object Dependency Example 9
Figure 3-1: Object Diagram Example 12
Figure 3-2: Executive Level Software Architecture 13
Figure 3-3: Connection Manager Software Architecture 13
Figure 3-4: System Level Architecture 14
Figure 3-5: Overall Software Architecture 15
Figure 4-1: Turbofan Engine Description 18
Figure 4-2: Turbofan Engine Object Diagram 19
Figure 4-3: Burner_Object_Manager Package Specification 23
Figure 4-4: Burner_Object_Manager Package Body 24
Figure 4-5: Executive-Level Connection -- Spark Conversion Routine 29
Figure 4-6: System-Level Connection 30
Figure 4-7: Engine Representation Example 32
Figure 4-8: Engine Aggregate Example 34
Figure 4-9: Executive Activity Table Example 36
Figure 4-10: Flight Executive Example 37
Figure 4-11: Object Dependency Example 38
Figure 5-1: Object Manager Template Example 42
Figure 6-1: Executive Connection Procedure Example 45
Figure 6-2: Communicating with a Data Transfer Buffer 45
Figure 6-3: Alternative Engine Object Diagram 49
Figure 6-4: Alternative Software Architecture 50
Figure 6-5: Executive Example 51
Figure 6-6: System Example 52
Figure 6-7: Generic Object Manager Example 54
Figure 6-8: Generic Object Instantiation Example 55
Figure A-1: Object, Subsystem and Dependency Notation 60
Figure A-2: Package Notation 61
Figure A-3: Subprogram Notation 62
Figure A-4: Task Notation 63

\%

CMU/SEI-88-TR-30

Preface

This is the second edition of the SEI Technical Report, An OOD Paradigm for Flight
Simulators, which was first issued in December, 1987. We have issued this edition to report
modifications we made to the paradigm while preparing for a tutorial given at the March,
1988 AdaJUG in Phoenix, AZ.

The paradigm is being used by SEI affiliates on full-scale devlopment programs. The SEI
project team supports the use of the paradigm by consulting with the affiliates. The
affiliates’ efforts improve the paradigm by tailoring it to the nuances of particular programs.

This report does not describe all the ways the paradigm has been tailored to fit specific
programs. The resuits of those efforts will be documented in subsequent versions of this
report. Some of the more substantial changes are treated as Open Issues in Section 6 of this
edition.

CMU/SEI-88-TR-30 1

CMU/SEI-88-TR-30

1. Introduction

1.1. Abstract/Background

This report presents a paradigm for object-oriented implementations of flight simulators. It
is a result of work on the Ada Simulator Validation Program (ASVP) carried out by members
of the technical staff at the Software Engineering Institute (SEI).

1.2. Motivation

Object-oriented design (OOD) predominates discussions about Ada-based software engineer-
ing. The identification of objects and the implementation of objects are two separate issues.
This paradigm is a model for implementing systems of objects. The objects are described in a
form of specification called an object diagram.! The paradigm is not about how to create the
specification.

Although much has been written on object-oriented design, SEI project members could find
no examples of object-oriented implementations relevant to flight simulators. Examples
were required for two reasons. First, object-orientation was new to both of the contractors on
the ASVP. A methodology which leads to a specification of objects is useful only if developers
know how to implement what is specified. Second, managers were skeptical about the bene-
fits of object-oriented design. Examples were needed to determine whether benefits out-
weigh costs.

The intent of our work was to produce examples of object-oriented systems. It was not our
intent to determine whether object-oriented design was best for flight simulators.?

1See Chapter 4 and Figure 4-2 for an example of an object diagram.

2See Section 2.1 for some historical motivation.

CMU/SEI-88-TR-30 3

1.3. Characteristics of the Application Domain

The paradigm was developed for a specific application domain, namely flight simulators and
training devices. This section puts the paradigm in context by briefly describing the relevant
features oi the application domain.

The objective of a flight simulator is to reproduce on the ground the behavior of an aircraft in
flight. Simulators are used to:

¢ train aircrew
¢ train maintainers of aircraft

¢ aid designers of aircraft

A training simulator consists of a mock-up of stations for the aircrew being trained. The
mock-up contains the controls available to manipulate the aircraft and systems for cuing the
operator to the aircraft’s response to his actions. Cues include gauges, video, sound, and
motion.

The training mission is set by an instructor at an Instructor Operator Station (I0S). Some of
the factors set by the instructor are longitude, latitude, altitude, and atmospheric conditions.
Instructors also affect the behavior of the simulator by introducing aircraft malfunctions.

The ASVP focused on software that models the behavior of major systems affecting an
‘aircraft’s flight: the airframe, the engines, the electrical system, the fuel system, the
hydraulic system, and others.

Traditionally, this software is put under the control of an executive which periodically up-
dates systems. Flight simulators are not event-driven. Interaction between systems in the
real aircraft are continuous. Simulators model those interactions in discrete time.

Time constraints are normally tighter than memory constraints. Multiple processors are
used to distribute processing and to link the software to hardware in the aircrew training
station. Trends are such that multi-processor architectures are becoming more prevalent in
the domain.

Flight simulators are long-lived and frequently modified. The two major modifications are
changes to the aircraft itself which must be reflected in the simulator software and, secondly,
changes in the training missions. Typical of the latter are the addition of new malfunctions.

Flight simulators are based on math models provided by the manufacturer of the aircraft
components in the actual aircraft. The ultimate test of the simulator is the way it feels to
aircrew experienced with the aircraft being simulated. The process of tuning the feel of the
simulator is called aircrew tuning.

Flight simulators provide natural opportunities for reusing software. First, different aircraft
have the same kinds of components, e.g., engines, fuel systems, electrical systems, etc.

4 CMU/SEI-88-TR-30

Sometimes a particular instance of a kind of component, a Pratt and Whitney engine for
example, is used on a variety of aircraft. Second, the three classes of simulators—training,
maintenance, and engineering—model the same components to varying degrees of fidelity.
Third, a simulator is made up of systems that can be viewed identically at some level of
abstraction.

1.4. Reader’s Guide

This report contains the work completed to date, presents the paradigm, and discusses the
advantages of the paradigm. It is meant to stand on its own merits. The model we have
developed solves a specific set of problems. We do not claim it to be the only model for
solving these problems. The paradigm uses many of the characteristic software engineering
concepts, but the report is not intended to be a report on software engineering theory.3

The next chapter discusses our approach to developing the paradigm and how we assessed
the fit of our solution to the problem at hand.

Chapter 3
introduces the conceptual elements of the paradigm and provides an overview of the
software structure implied by the paradigm.

Chapter 4
presents a detailed view of the elements of the paradigm. The elements are presented
bottom-up using an Engine system as an example. Each section on a particular ele-
ment ends with a discussion of the benefits of the implementation chosen for the para-
digm. The final section of Chapter 4 summarizes the benefits of the paradigm.

Chapter 5
discusses the role of a paradigm in the development process.

Chapter 6
discusses issues which we have thought about during the development but have not
had time to fully address.

Chapter 7
is a very brief presentation of a simulator Electrical system.

Appendix A
describes a modified form of the notation expounded by Grady Booch in his book on
software engineering with Ada [1] and his book on reusable software components with
Ada [2]. The notation is used in the diagrams in Chapter 3.

Appendix B
contains an object manager template. The use of reusable code templates is discussed
in Chapter 5.

Appendix C
presents a version of the Engine system code complete through the package specifi-
cations. The intent is to demonstrate the software architecture defined by the object
paradigm discussed in Chapter 4.

3If the audience perceives that this report would be useful within a tutorial on software engineering, we invite
such a use of the report.

CMU/SEI-88-TR-30 5

CMU/SEI-88-TR-30

2. Approach

2.1. History

The project team began the search for a paradigm after reviewing an implementation of an
electrical system done by one of the contractors on the ASVP. The implementation was more
data-oriented than object-oriented. The implementation was a definite improvement over
the original FORTRAN implementation. However, the team did not consider the implemen-
tation to be exemplary.

The project team decided to spend what it thought would be no more than a month or two
developing an example of a pure object-oriented design of an electrical system. A circuit
diagram was used to identify the objects and the relationships among the objects. The be-
havior of the objects, e.g., circuit breakers, relays, and batteries, and of circuits in general,
was well understood.

Material available to us on object-oriented design did not adequately address connections
among objects or updating systems of objects in discrete time.

The project team implemented an object-oriented electrical system which came close to satis-
fying the goals described below. At that time one of the contractors on the ASVP asked the
project team to sketch out an object-oriented implementation of an engine. The team ob-
served that the object-oriented implementation of an engine and of an electrical system were
identical at some level of abstraction.

The project team decided to capture the similarities in a paradigm for object-oriented sys-
tems. The paradigm was to dictate how an object-oriented specification would be imple-
mented in software and how the update of systems would be controlled. The drive to gener-
alize uncovered flaws in our designs of both the engine system and the electrical system.

The project team did not develop the paradigm methodically. We were not interested in
testing design methods. Our goal was to produce a paradigm for object-oriented systems.
We did not want to limit our search space to architectures produced by known methods.

CMU/SEI-88-TR-30 7

2.2. Design Goals

The project team began with two basic goals. One was to eliminate nested implementations
of objects. The other was to simplify dependencies among objects.

2.2.1. Nested objects

Nested objects result from decompositional approaches that purport to help the designer
discover which objects are needed to implement a system. For example, the designer begins
with the notion of an engine as a black box. All interfaces to the engine appear at the surface
of the black box. Now, suppose the vibration of an engine compressor needs to be metered.
The designer decides to decompose the engine into other objects, one of which is a compres-
sor. Access to the vibration level of the compressor passes through two levels: the engine
level and the compressor level. Further, decomposition might lead to modeling each stage of
the compressor as an object, thus adding a third layer to the nested object. Finally, black box
implementations require knowledge of the entire black box, even when only one state or
aspect of the black box is used.

Nested, hierarchical objects do have advantages. First, it should be possible to update a
composite object, such as an engine, as if it were a black box. Second, it should be possible to
reuse an object, such as an engine, as a separate entity.

2.2.2. Object dependencies

Figure 2-1 shows a dependency between objects A and B In this example, B provides A with
something.* Thus the state of A depends on the state of B.° There are several ways for
handling this dependency. One common method is to have the implementation of object A
with object B. When A is updated, A reads the relevant state of B. This method does not work
if B and A are on separate processors. Even if A and B are on the same processor, it is never
clear which object should define the dependent data type.

Another common solution is to have object B call object A and report its state. This solution
introduces a new problem without solving the problem mentioned above. If the flow between
B and A is continuous, then it is unnatural for object B to model discrete time by controlling
the rate at which A is updated. Further, if B and A are part of a closed feedback loop, the
update cycles indefinitely.

‘The same diagrammatic notation is used throughout this report. The arrows represent dataflows. Thus
something is needed by the object at the head of the arrow and is supplied by the object at the tail of the arrow. The
arrow is labeled with the data near its tail.

5In Ada, an object which depends on another, separately compiled object, uses the with clause to gain visibility of
the dependent object. The object is said to with the dependent object.

8 CMU/SEI-88-TR-30

Object A < something Object B

Figure 2-1: Object Dependency Example

2.3. Evolution of the Paradigm

Designers talk about the fit of a design to its context, the problem space. The criteria for
assessing the fit of solutions to complex problems often can be determined only in response to
a proposed solution and cannot be determined before solutions are generated. Such was the
case for the paradigm.

Our team began with intuitive feelings about the standard goals of software engineering,
such as modularity, ease of enhancement, and reuse. The paradigm passed through several
iterations within the team. Each iteration left a legacy of criteria for assessing the fit of the
solution for the paradigm.

For example, the model for object managers® and a means for connecting objects surfaced in
the first version of the paradigm. The objects stood alone, and were not dependent on Ada
types declared elsewhere. This enhanced the reusability of the object managers and facili-
tated independent development. The means for connecting objects had an intuitive analog in
the real-world. Pipes and wires, connecting objects in the world, are as real as the objects
themselves and would not be subsumed in software by the implementations of the objects.

Since the first edition, the notion of a connection has changed. Conduits, e.g., the Engine
Casing in the Engine system (see Chapter 4), or wires in the Electrical system, can have
states just like other objects and might need to retain information about previous states like
other objects. Futhermore, these "connecting” objects could be in a malfunctioning opera-
tional state like other objects. Therefore, this kind of object is now considered equivalent to
other objects. The abstraction which is now called a connection merely transfers data be-
tween any two objects. A connection does not have an analogy in the physical world; it
merely implements an arrow on the object diagram, Figure 4-2.

6Object managers are introduced in Chapter 4.

CMU/SEI-88-TR-30 9

Also, after issuing the first edition, we determined that the distinction we had made between

systems and subsystems was not necessary. Thus, the notion of a subsystem has been
eliminated.

The chapters which follow discuss the advantages of the paradigm. We did not set out to
obtain these advantages. The advantages revealed themselves as the work progressed. An
advantage which revealed itself in one iteration, was retained as a criterion for evaluating
the fit of subsequent iterations.

10 CMU/SEI-88-TR-30

3. Concepts Used by the Paradigm

This chapter provides a brief description of some of the concepts introduced with the para-
digm and a high level overview of the software architecture defined within the paradigm.
The concepts are further elaborated in Chapter 4.

The paradigm described in this report begins with the notion of an executive. An executive
controls the update of a set of systems compiled together running on a single processor. The
paradigm assumes that there will be more than one set of systems and that multiprocessing
will be involved.

Communication between executives is handled by an abstraction called a buffer. A buffer is
some means of sharing data among separately compiled software.” The paradigm makes no
assumption about how the operating system transfers data or how executives on separate
processors are invoked.

The fundamental units of the paradigm are objects and connections. Objects map to real-
world entities. An object is implemented as a math model that maps the environmental
effects on the object to the object’s outputs, given the attributes of the object and its opera-
tional state. The implementation isolates individual effects. Also, an object is not aware of
its connections to other objects.

A connection is the mechanism for transferring state information between objects. Proc-
essing a connection involves reading the state of some objects on the connection and broad-
casting to others.

At all levels, updates are accomplished by gating (or processing) the appropriate connections.
The levels discussed in the paradigm are system and executive. A system is an aggregation of
objects® and the connections among those objects. An executive is a set of systems and all
connections that cross system boundaries, i.e., connections between objects in different sys-

"In our observations of flight simulators, a buffer is a record data structure used in the communication between
processors.

8The aggregation is a matter of convenience. The objects are aggregated because they cooperate in performing
common goals.

CMU/SEI-88-TR-30 11

tems. Figure 3-1 shows views of an executive, two systems, and several objects and connec-
tions.

Executive-level

System 1 System 2
d e
1 —¥ 3 |« 4
. /
* r a2 tc
2 / 5

Executive is : System 1, System 2, and connectionsa and e
System 1 is : Objects1, 2, and 3, and connections b and d
System 2 is : Objects 4, 5, and connection ¢

Figure 3-1: Object Diagram Example

3.1. Overview of the Software Architecture

3.1.1. The Executive Level

Figure 3-2 shows the executive-level software architecture.? In this case, we assume an
executive-level called Flight_Executive. The body of the Flight_Executive package contains a
tabular schedule of systems to update. The names of the systems are declared in the pack-
age Flight_System_Names, the sole purpose of which is to enumerate the names.

Each system is represented by a package called <system_name>_System.1® The specifi-

9See Appendix A for a description of the icons used in Figures 3-2, 3-3, and 3-4. The arrows on the diagrams
represent (withing) dependencies. The shaded portions of each icon represent the package body, the white portions
the package specification. Note that the dependencies originate within package bodies. This reduces the need for
widespread recompilation in the event of a change.

1°The use of "<...>" within subprogram names, type names, or text refers to a general case of the itam. For
example, <system_name>_System, is a general form representing all instances of the package name, e.g.,
Engine_System, Electrical System, Fuel_System, etc. See Chapter § for a more detailed discussion and
examples of the use of "<...>".

12 CMU/SEI-88-TR-30

Flight_Executive

Flight_| Exocutlvo _Connections Englne System Electﬂcel _System Fuel Systom

£ £ 9 -

Figure 3-2: Executive Level Software Architecture

cation of a System package exports a single procedure which is called by Flight_Executive to
update a system.

The connections belonging to the executive-level are managed by an

<executive_name>_Connections package, in this case, Flight_Executive_Connections.

The architecture from the perspective of the connection package is shown in Figure 3-3.
Flight_Executive_Connections

Engine_System_Aggregate

Diffuser_OM Rotor1_OM Rotorz oM Burnor OM Bleed atve OM Fan Ducx oM Exhaust_OM Engine Laslng oM

=S|Il £1E) 1 £ £

OM = Object_Manager
Figure 3-3: Connection Manager Software Architecture

The body of the connection package is a series of separate procedures, one for each system

CMU/SEI-88-TR-30 13

under the control of the executive. Each separate procedure is responsible for gating all the
executive-level connections to a system.

3.1.2. The System Level

Figure 3-4 shows the architecture from th. y~rspective of a system, using the Engine system
as an example. Objects in a sysiem are created and named by the
<system_name>_System_Aggregate package. Objects are managed by
<object_name>_Object_Manager (OM) packages.

Engine_System
Engine_System_Aggregate Engine_System_Connections
Diffusor _OM Rotort OM Rolorz Sumor _OM 8leed_Valve_OM Fan_| Duct _OM Engine Lsing oM

ﬂ]qﬂ‘

OM = Object_Manager

Figure 3-4: System Level Architecture

ExhauleM
L] I I=====]
3.1.3. Overall Software Architecture

The overall software architecture is shown in Figure 3-5. The executive-level consists of the
Flight_Executive package and the Flight Executive_Connections package. The
system-level consists of

» <system_name>_System package
e <system_name>_System_Connections package
» <system_name>_System_Aggregate package

The complete systel-level architecture of the Engine system is shown. The architecture of
the other systems, e.g., the Fuel system and the Electrical system, would be similar.

Each connection package is "nested" within the corresponding system or executive packages.

14 CMU/SEI-88-TR-30

Each connection within the connection packages is distinct, embodied within a separate pro-
cedure.

There is one object manager package per object.!!

Flight_Executive

Flight_| Executrve Connections Engine_System Electncal _System Fuel_System

Engine_System_Aggregete Englne System_Connectio

» .
-+ L] L]
Rotor1_OM Rotor2_OM Burner oM Bleod Valve_OM lefuw OM Fan_Duct_OM Exhaust oM Engme Casing_OM

—

SRR

OM = Object_Manager

Figure 3-5: Overall Software Architecture

1Note the object managers have no dependency on other modules.

CMU/SEI-88-TR-30 15

16

CMU/SEI-88-TR-30

4. Paradigm Description

The example used to illustrate the paradigm is a turbofan engine. Engines, in flight training
simulators, interact with a variety of other systems on the aircraft, including the Fuel sys-
tem, the Oil system, the Starter system, the Electrical system, and the Hydraulic system.
The engines also provide bleed air for Cabin Pressure and Air Conditioning systems.

Section 4.1 describes the engine components and the interaction of the engine with the other
aircraft systems and the outside environment. The following section, Section 4.2, describes
the Engine object diagram and, briefly, the meaning behind each icon on the diagram. The
rest of the chapter introduces the paradigm by discussing the implementation of the Engine
system. ’

4.1. Engine Description

Figure 4-1 shows a diagram of a turbofan engine with the relevant parts labeled. The
Engine Casing encloses the other engine parts and provides the conduit through which the
air flows as it interacts with the other parts. Air enters the Diffuser at some temperature,
pressure, and flow rate. The Fan Duct directs part of the air flow out of the engine to
provide some thrust to the Airframe system of the aircraft. The initial set of blades on the
two Rotors adds energy to the air by compression. The Burner, or combustion chamber,
adds more energy to the air by mixing fuel, from the Fuel system, with the air and igniting
the mixture with a spark from the Ignition system. The second set of blades on the Rotors
removes some energy from the air to turn the Rotor shafts and their initial set of blades.
Finally, the Exhaust provides additional thrust on the Airframe system.

4.2, Ehgine Object Diagram

The Engine object diagram in Figure 4-2 is another representation of the Engine shown in
Figure 4-1. All the functionality apparent from Figure 4-1 is evident in Figure 4-2. In
addition, the Engine object diagram identifies the objects which comprise a generic turbofan
engine and the engine’s relationship with the outside environment. The correspondence be-
tween the real-world components of the engine and the object components in the object

CMU/SEI-88-TR-30 17

Diffuser Fap Duct Burner Engine Casing

--rrrrrr—‘T

g3 'l.l.-l' - 4 . .
.Ti _ E:—__I : Exhaust

Lot

Rotor1 Rotor2

(Bleed valve -- not shown)

Figure 4-1: Turbofan Engine Description

diagram represents the first of two meanings for object-orientation in this solution.l2 The
choice of objects may not be ideal but, for the purposes of the discussion in this report, this
set of objects is acceptable. (The Engine object diagram, Figure 4-2, will be referred to
throughout the rest of this chapter.)

There are four icons on the object diagram to represent four kinds of entities—objects, con-
nections, systems, and executives.

The square boxes within the rectangle represent the engine objects. The objects are:
¢ Diffuser
¢ Rotorl
e Fan Duct
¢ Rotor2
e Burner
¢ Bleed Valve
¢ Exhaust
¢ Engine Casing

The function of the objects is to map their inputs to their outputs. Objects in the real-world
know nothing of their environment, neither the objects which depend on them nor the objects
upon which they depend. We model objects the same way.

12The second meaning for object orientation is described in Section 4.3.

18 CMU/SEI-88-TR-30

wejs.
uonu

eApnoex3 B4

WejsAS
jen

wejsAs ﬁ Elja S
[eauloe3 Le]

b weisAg
h JeuelS

) | Comenky

wejsig
uoljejuewnisu|

weisAs

uolejuBWNISU|

wiedg moL4 jony .i._ah)
i i
Jsuing ¢10j0H
w
mol4 b moyd ay 3 4 mol
(] ‘enyes 1 ‘aunpeiedwe | .o!!l.... 1
. . ot | | i
2 —— mord ay mo3 Ay
A oy L ‘snpiedwe) ‘snpmedwe |
ety ‘snsseid ‘unsselg
8 vy wm POTSOOTT ¢ WOreoed
° _ Bujse eujbu3
) I f
u
Mol JIy 1oy euneseld jeu| eunsseld jeju| ebreyosig
_ : .__.ﬂm..o_hbdo 1 eBreyosiq
B einsseid jeju h iy -
u y L
| oA|BA
Josn
! poo|g a
*
Mol 1y msaﬁ.ﬁ \ a
einsse.d eBreyosig oh.ﬂﬂao-ﬂﬁ.__rﬂs

wejsis
JUBLIUOIIAY

Turbofan Engine Object Diagram

Figure 4-2:

19

CMU/SEI-88-TR-30

The Engine Casing object is the object through which the air flows as the air passes
through the engine. Each object has some dependency on the air flow, as it passes through
the Engine Casing, denoted by the arrows between the Engine Casing and the other
objects. Thus, the Rotorl Fanl Inlet air pressure, temperature, and flow comes from the
Engine C-sing. Also, each object has outputs needed by the Engine Casing, e.g., the
Rotorl Fanl Discharge air pressure, temperature, and flow are available to the Engine

Casing.

Each engine object in the Engine object diagram interacts with its external environment as
defined by the diagram. No other dependencies on the outside world should be necessary
except for those shown in the diagram. The diagram serves as a specification for the Engine
system interfaces. Given such a diagram and the paradigm description that follows, the
design of the Engine system is complete.

The arrows represent connections. A connection moves information between objects. An
arrow points in the direction of data flow, e.g., a datum, called mach number, flows from the
Airframe system to the Diffuser object, and other information flows from the Exhaust ob-
ject to the Airframe system and the Instrumentation system.l4A double-headed arrow
represents two single-headed arrows, one pointing in each direction. The arrows are always
labeled with the state information that is passed between the objects. The label nearest the
tail of an arrow names the data flowing toward the head of the arrow.

On the Engine object diagram, the Engine system is the area within the large, round-
cornered rectangle (roundtangle). The roundtangles external to the Engine system represent
other systems in the aircraft, e.g., Electrical system and Fuel system, or in the aircraft’s
environment, e.g., the Environment system. A system is composed of its objects and the
connections between the objects. These connections are called system-level connections.
Thus, the Engine system is made up of the engine objects and the connections between them
inside the roundtangle. An aircraft simulator for a multi-engine aircraft would have multi-
ple engine systems. Each would be handled identically internally but would have different
connections to the outside world.

A system provides two abstractions. First, a system logically groups a set of objects and their
connections. Second, a system provides an update abstraction to update the objects as a unit
in order to maintain system state consistency. The system performs the update by gating,
i.e., processing, all of its system-level connections.

The final icon on the Engine object diagram is the executive, represented by the heavy, gray
outline. An executive groups a community of systems and coordinates time for the commu-
nity, i.e., provides an ordered update of all the systems. The connections between systems
are executive-level connections. An ordered update of a system consists of two steps:

45 actuality, all connections are between objects. So, more correctly, the mach number flows from some object in
the Airframe system to the Diffuser object in the Engine system. This point will be elaborated in later sections of
this report.

20 CMU/SEI-88-TR-30

¢ gating the executive-level connections and

o calling the system to perform its update.

The object diagram thus depicts natural, real-world entities, such as objects and systems,
and entities that originate from the commitment to run the simulator on a computer, i.e.,
connections which move data and executives which control time and allocate resources, such
as the CPU, Each of the abstractions—objects, connections, systems, and executives—will be
discussed in more detail in the rest of this chapter.

4.3. Object Abstraction

This section describes an object abstraction assuming the objects are identified. The engine
diagram in Figure 4-2 will serve as an example.

Objects correspond to real world entities. Objects generalize behavior, i.e., they know noth-
ing about their environment and they are identical in each of the engines in a multi-engine

system. They only differ in how they are connected to their environment. The objects,

however, have no knowledge of these connections.!®

A snapshot of the latest external effects is retained in the objects. The outputs (also called
the state of the object), which are readable at any time, are always consistent with the latest
snapshot. The function of the objects is to map from the inputs to the outputs.

4.3.1. Object Managers

Each object is represented by an object manager. There is a single object manager for all
instances of the object.1 Referring to the Engine object diagram, Figure 4-2, there will be an
object manager for each of the objects in an engine:

¢ Diffuser

* Rotorl

¢ Fan Duct

* Rotor2

¢ Burner

+ Bleed Valve

e Exhaust

¢ Engine Casing.

The object manager defines the attributes of the object. The attributes are invariant charac-
teristics defined at elaboration, e.g., an ampere rating of a circuit breaker.

3Connections are described in Section 4.4.

16The term manager is used because all access to each object is administered through the interface defined by the
object manager.

CMU/SEI-88-TR-30 21

The object manager defines the operational state of the object. The operational state refers to
those characteristics which may change with time, e.g., the frictional state of a rotor, mal-
functions, or aging effects on various components.

The object manager allows the object’s environmental effects to be placed on the object. The
environmental effects are external object states which are required by the object to deter-
mine its state. The environmental effects are placed on an object by connecting procedures.
The procedures defined for these operations are described in Section 4.3.3.

The object manager implements the math model for the object. The math model is imple-
mentation dependent. The math model maps the object’s inputs to its outputs.

The object manager produces the outputs available from the object. The outputs are gener-
ated by the math model, using the environmental effects placed on the object and any addi-
tional constraints imposed by the attributes and the operational state of the object. The
math model may be invoked when environmental effects are placed on the object or when
outputs are read from the object. This is an implementation level decision left to the system
designer; it is not defined by the paradigm.

The object manager defines an interface to the operations available on an object. The opera-
tions allow the placing of environmental effects, updating the operational state, and reading
the outputs of the object. ’

The actual instances of the object are stored in object aggregates which are discussed in
Section 4.5.1. An aggregate allows named access to the objects; no procedure call is required
to retrieve the object.

Finally, the object manager is independent of the rest of the system. The only compilation
dependencies are on global types.

4.3.2. Object Manager Structure

The representation of the object in an object manager is declared as a private type in the
package specification.!” Figure 4-3 is a partial package specification containing typical type
definitions found in an object manager.!® Use of a private type allows external access to the
object, through the operations provided, while hiding the details of the object’s implemen-
tation. In addition, the package specification must define all the types used to describe the
object’s attributes, the operational state, and the placeholders for environmental effects.

For example, "type Burner is private" in Figure 4-3.

18Package Standard_Engineering Types, withed at the beginning of Package Burner_Object_Manager in
Figure 4-3, contains global definitions for typical simulator types. The package is shown in Appendix Section C.2.

22 CMU/SEI-88-TR-30

with Standard_Engineering Types;
package Burner_Object_Manager is
package Setrenames Standard_Engineering_Types;

type Burner is private ;
-- an Burner is an abstraction of a Burner within an Engine.

type Sparkis (None, Low, High);
- burner needs only to know relative spark size

type Fuel_Flow is (None, Flowing);
-- the burner needs to know only if it has fuel available

function New_Burner return Burner;

procedure Give_Inlet_Air To
(A_Burner :in Burner;
Given_Inlet_Pressure :in Set.Pressure;
Given_Inlet_Temperature : in Set.Temperature;
Given_Inlet_Air_Flow :in Set.Air_Flow),

procedure Get_Discharge_Air_From
(A_Burner: in Burner;
Returning_Discharge_Pressure :out Set.Pressure;
Returning_Discharge_Temperature : out Set.Temperature;
Returning_Discharge_Air Flow :out Set.Air_Flow);

procedure Give_Fuel_Flow_To
(A_Burner :in Burner;
Given_Fuel_Flow : in Fuel_Flow);

procedure Give_Spark_To (A_Burner :in Burner;
Given_Spark : in Spark);

pragma Inline (Give_Inlet_Air_To,
Get_Discharge_Air_From,
Give_Fuel_Flow_To,
Give_Spark_To)

private
type Burner_Representation;
- incomplete type, defined in package body

type Burner is access Burner_Representation;
- pointer to an Burner representation

end Burner_Object_Manager;

Figure 4-3: Burner_Object_Manager Package Specification

19For the Burner Object Manager in Figure 4-3, type definitions for Spark and Fuel_Flow
are provided. In the private part of the package specification, the object’s private type is

The attributes and operational state variables must be visible to the system aggregate package which instan-
tiates the object and to the system-level and executive-level connections packages which use the object’s types and
operations. See Sections 4.4, 4.5, 4.5.1, and 4.6 for descriptions of connections, systems, aggregates, and executives,

respectively.

CMU/SEI-88-TR-30

declared as an access pointer to a data type which will be the actual representation of the
object. The data type is an incomplete type, the details of which are delayed until the pack-
age body.20

The objact’s data representation, defined in the package body, must allow for storage of en-
vironmental effects and reading of the object’s outputs. A typical implementation is a record
with components for each of the object’s attributes, operational state variables, and
placeholders for the environmental effects. Each attribute component must have a default
value and each operational state variable should have an initial state value. Figure 4-4
contains an incomplete package body for the Burmer object manager. The
Burner_Representation is a record with fields for environmental effects, e.g., inlet air pres-
sure, temperature, and flow, fuel, and spark values. The record also has fields for output
values, e.g., discharge pressure, temperature, and flow.

package body Burner_Object_Manager is

type Burner_Representation is

record
Inlet_Air_Pressure :Set.Pressure :=0.0;
Inlet_Temperature : Set.Temperature := 300;
Inlet_Air_Flow : Set.Air_Flow :=0.0;
The_Spark : Spark = High;
The_Fuel : Fuel_Flow := Flowing;
Discharge_Air_Pressure : Set.Pressure := 0.0;
Discharge_Temperature : Set.Temperature := 300;
Discharge_Air_Flow :Set.Air Flow :=0.0;

end record ;

—~ Subprogram bodies go here

end Burner_Object_Manager;

Figure 4-4: Burner_Object_Manager Package Body

4.3.3. Object Manager Operations

There are three types of operations within each object manager. There is also a standard
naming convention for these operations. One side effect of the naming convention is that all
object managers begin to look very similar. The similarity can be exploited to create an
object manager template, see Chapter 5, which can be used to generate new object managers.

The first type of operation is used to create new instances of the object. This operation is a
function, named New_<object>21, which returns an instance of the private type, <object>.

20See Appendix Section C.4 for the complete Package Specification for the Burner object. Appendix C provides an
implementation of the Engine system through the Ada specifications.

2The use of "<...>" within subprogram names, type names, or text refers to a general case of the item. For
example, New_<object>, is the general form representing all instances of the New function, e.g., New_Burner,
New_Rotorl, New_Exhaust, etc. See Chapter 5 for a more detailed discussion and examples of the use of "<...>".

24 CMU/SEI-88-TR-30

For example, in Figure 4-3, the function provided by the Burner object manager is called
New_Burner; it returns an instance of the private type, Burmer. This private type is a
pointer to a new instance of the data type representing the object.?2 In addition, values for
attributes or operational state variables, which need their default values changed or their
initial values defined, may be set by the New_<object> function. Typically, this function is
called at elaboration, i.e., during system initialization. The return value, a pointer which is
the "ID" of the new object, is stored and used to access the object in later operations. See
Section 4.5.1 for more discussion on this point.

The second type of operation is used to write external effects, i.e., environmental effects and
operational state changes, on an object. The naming convention for this operation is
Give_<external_effects>_To. The operation takes the object private type and either exter-
nal environment values or new operational state values as arguments. In Figure 4-3, the
procedure Give_Inlet_Air_To is an example of this type of operation.

The characteristics of the Give_<external_effects>_To procedure are as follows:

e report external environmental effects to the object. The stored values of the
environmental effects will be used the next time the object’s outputs are cal-
culated. These updates are typically under the control of a cyclic executive and
are placed on the object one or more times each cycle.

e report a change in the operational state to the object. The stored values of the
operational state variables will be used the next time the object’s outputs are
calculated. These changes are typically asynchronous events triggered by the
instructor at the 10S.

e the environmental effects and operational state variables are "saved"” with the
object in the private data structure.

e the environmental values stored with the object are consistent with the external
effects at all times.

Ideally, the math model isolates the individual effects of the environmental effects. Calcula-
tion of the object’s outputs can be postponed until the object’s internal state is read.

The interfaces defined by the Give_<external_effects>_To operations can be read directly
off the object diagram, Figure 4-2. There will be one procedure per dataflow arrow. For
example, in Figure 4-3, procedure Give_Inlet_Air_To, for the Burner object manager,
takes the pressure, temperature, and air flow as arguments.

The third type of operation is used to read an object’s outputs. The outputs are calculated by
the math model using the environmental effects placed on the object and any additional

22There are other options for managing storage allocation for the objects. One is to use the allocator directly,
within the system aggregate package, rather than performing the function call to New_<object>. But then the type
<object>_Representation would have to be visible. A second method would be to build an alternate allocator
using statically defined <object>_Representations. Then each time an <object> had to be allocated, one of the
statically defined instances would be assigned. This approach has merit if garbage collection is an issue. We are
continuing to look into these and other approaches.

CMU/SEI-88-TR-30 25

constraints imposed by the attributes and the operational state of the object. The naming
convention for this operation is Get_<object_output>_From. The operation takes the ob-
ject private type as an argument and returns the object’s outputs. In Figure 4-3, the proce-
dure Get_Discharge_Air From is an example of this type of operation.

The characteristics of the Get_<object_output>_From operation are as follows:

¢ the response reflects the current state of the object. The state is dependent on
the environmental effects previously placed on the object, the object’s attributes,
and the object’s operational state. The outputs are read from the private data
structure or calculated from the values stored in the data structure.

o the output state of the object is consistent with the external environmental ef-
fects at all times

e each operation is specific to the object and the output of the object that it reports.
This operation is the only way to access the object’s output.

The interfaces defined by the Get_<object_output>_From operations can be read directly
off the object diagram, Figure 4-2. There should be one procedure per dataflow arrow. For
example, in Figure 4-3, procedure Get_Discharge_Air_From, for the Burner object man-
ager, returns the pressure, temperature, and air flow.

The output state of an object, determined from its environmental effects, attributes, and
operational state, may be calculated either when new external information is written to the
object (and then the output state should be stored with the object), by the
Give_<external_effects>_To procedure, or when outputs are read from the object, by the
Get_<object_output>_From operation. In the first case, each time an external effect is
deposited, a new output state should be calculated and stored so that the correct output state
can be returned on subsequent read operations. Since each external effect is independent of
all others, the object’s output state will be consistent at all times. In the second case, an
object’s output state is not stored, but calculated each time the outputs are read. The deci-
sion as to which implementation to use is up to the implementor of the system. That level of
detail is not specified in the paradigm.

4.3.4. Advantages of the Object Abstraction

The object abstraction developed here is the second of two meanings of object orientation.?
The object abstraction includes:

3

o the packaging strategy used, i.e., private types and local data stored with the
object

o the object operations which are intentionally designed without side effects

e the objects which are stand-alone with no dependencies on other entities in the
solution

Thus, there is a natural progression from real-world entities to design objects and from de-
sign objects to a consistent software representation.

23The first was the correspondance between real-world entities and design objects on page 17.

26 CMU/SEI-88-TR-30

The implementation of objects follows the standard model for object-oriented abstraction.
The object managers embody the state of objects, and changes in the objects’ environment are
placed on the objects procedurally. The major difference is the removal of connections from
the objects (connections are described in Section 4.4). This decision supports separate devel-
opment of objects since there is no dependency on any modules other than global types. In
addition, spaghetti compilation dependencies are prevented. Finally, reuse is supported,
since data-type differences between objects are not an issue.24

Another advantage of the object managers is to focus the addition of details in one place. For
example, if there is loss of efficiency in the movement of air through the Burner, the loss can
be modeled in the object manager for the Burner. Also, malfunctions in components can be
simulated in the objects. The introduction, handling, and reporting of a malfunction should
be introduced at the object manager level.

4.4, Connection Abstraction

In the real-world, laws of nature or physics govern the transfer of state information between
objects. For example, heat provided by the Burner is transferred to the air flowing through
it. Futhermore, the laws of nature function continuously on a single "processor" without
regard for units of measurement or other information.

In a computer system, state information must be transferred explicitly among objects that
are updated in discrete time on multiple processors and must be transferred with some type
of units.

This section describes connections, the mechanism for transferring state information be-
tween objects. Connections do not correspond to real-world entities such as wires or pipes.
Connections simply model the proximity of one object to another in the real-world.

4.4.1. Overview of Connections
The connections in Figure 4-2 are represented by arrows. An arrow points in the direction of
data flow. A double-headed arrow represents dataflow in both directions.

Connections also provide a means to transfer information between physical objects and soft-
ware objects. Buffers can exist between physical objects and the software system. The
buffers may be, for example, a linkage buffer between the software and the simulator
hardware, an Instructor Operator Station (IOS) buffer between the software and the IOS
station, or buffers between processors in a multi-processor configuration. In all these cases,
the connection handles the transfer of environmental effects or operational state information
from the buffer (the representation of the physical object) to the software objects and the
transfer of object state from the software objects to the buffer. For example, software lights
in the electrical system can be turned on and off as a result of external environmental effects

%0One of the roles of connections is to convert types when necessary, see Section 4.4.

CMU/SEI-88-TR-30 27

or operational state changes. These effects must be transferred to the simulator cockpit and
affect a change in the physical lights. Lights can also be turned on and off in the simulator
cockpit by the students. These effects must be transferred to the software and change the
operational state of the software lights. The linkage buffer between the cockpit and the
software is used and connections handle the information flow.

Finally, the updating of a system is accomplished by moving information along connections ,
i.e., gating the executive-level and system-level connections in order.

4.4.2. Procedural Abstraction

The connections between objects are captured procedurally, using the object operations. All
connections between objects within systems and between systems are modeled this way.
These operations, defined with the object, allow for writing information to the object and
reading information from the object. See Section 4.3.3 for more discussion on the object
operations.

Thus, the connecting procedures exist outside the object managers, but have visibility into
the object managers.

The connecting procedures need to perform three steps:
® obtain the needed information directly from an object
o convert the information if necessary
o put the information directly onto another object
Each step is discussed in more detail in the following sections.

4.4.2.1. Get Needed Information

The initial step is to obtain the external information which must be placed on an object. The
provider of the information is defined within an object diagram at the tail of each arrow, as
in the Engine diagram, Figure 4-2. The provider will be either an object in an external
system, e.g., the Fuel system or Ignition system, or another object within the Engine system.

If the provider is from an external system, the procedure modeling the connection must have
access into the objects of each system. Thus the procedure needs to exist at the next higher
level of abstraction, i.e., within the enclosing executive. These connections are called
executive-level connections. Within the executive connection procedure, local variables may
exist to allow for temporary storage of the information, as in Figure 4-5. The current value of
spark, from the Ignition object manager, is obtained with a call to Get_Spark From and
stored in the local variable Some_Spark. Thus, although the paradigm does not advocate
careless data-typing, it recognizes that perfect type matches between objects will not always
be possible.

If the provider is from another object within the Engine system, then the enclosing scope of
the objects, i.e., the Engine system itself, handles the connection. These connections are
-called system-level connections. Figure 4-6 shows the connection between the Diffuser and

28 CMU/SEI-88-TR-30

with Standard_Engineering Types;
with Engine_System_Aggregate;
with Ignition_System_Aggregate;

with Flight_System_Names;

with Burner_Object_Manager;
with Ignition_Object_Manager;

separate (Flight_Executive_Connection_Manager)
procedure Process_External_Connections_To_Engine_System is
Integrated_Drive_Energy : Generator_Object_Manager.Energy;

Some_Spark : Ignition_Object_Manager.Spark;
The_Burner_Spark : Burner_Object_Manager.Spark;

function Spark_Conversion (In_Spark : in Ignition_Object_Manager.Spark)
return Burner_Object_Manager.Spark is
begin
case In_Sparkis
when 0..2=>
RETURN Burner_Object_Manager.None;
when 3..9=>
RETURN Burner_Object_Manager.Low;
when 10..20 =>
RETURN Burner_Object_Manager.High;
end case;
end Spark_Conversion;

begin - Process_External_Connections_To_Engine_System
for An_Engine in Flight_Systems Names Aircraft_Engines loop

Some_Spark := Ignition_Object_Manager.Get_Spark_From
(A_Ignition => Ignition_System_Aggregate.Ignitions
(Engines_To_Ignition_Map (An_Engine)));

The_Burner_Spark := Spark_Conversion (Some_Spark);

Burner_Object_Manager.Give_Spark_To
(A_Burner => Engine_System_Aggregate. Engines
(An_Engine).The_Burner,
Given_Spark => The_Burner_Spark);
end loop;
end Process_External_Connections_To_Engine_System;

Figure 4-5: Executive-Level Connection --
Spark Conversion Routine

the Engine Casing. The discharge air pressure, temperature, and flow are obtained from
the Diffuser with the call to Get_Discharge_Air_From.

4.4.2.2. Convert Information

The connecting procedures encapsulate type conversions. Each object manager maintains
the state of the object in the units which make sense to that object. The connecting proce-
dures handle the type conversions which are necessary between the object managers.

CMU/SEI-88-TR-30 29

with Flight_System_Names;
with Engine_System_Aggregate;

with Diffuser_Object_Manager;
with Engine_Casing_Object_Manager;

package body Engine_System is
procedure Update_Engine_System is

Diffuser_Discharge_Pressure : Set.Pressure;
Diffuser_Discharge_Temperature : Set.Temperature;
Diffuser_Discharge_Air_Flow : Set.Air_Flow;

begin
for An_Engine in Flight System_Names.Aircraft_Engines loop

-- Model the connection characterized by the dependence of the
-- Engine Casing on the Diffuser for Pneumatic_Energy.
Diffuser_Object_Manager.Get_Discharge_Air_From
(A_Diffuser =>
Engine_System_Aggregate.Engines
(Given_Engine_Name).The_Diffuser,
Returning Discharge_Pressure =>
Diffuser_Discharge_Pressure,
Returning Discharge_Temperature =>
Diffuser_Discharge_Temperature,
Returning_Discharge_Air_Flow =>
Diffuser_Discharge_Air_Flow);

Engine_Casing_Object_Manager.Give_Air_Flow_To
(A_Engine_Casing =>
Engine_System_Aggregate.Engines
(Given_Engine_Name).The_Engine_Casing,
Given_Air_Flow => Diffuser_Discharge_Air_Flow);

end loop;
end Update_Engine_System;

end Engine_System;

Figure 4-6: System-Level Connection

In Figure 4-5,25 the intermediate value, Some_Spark, obtained during the get information
step above, is converted to the local variable The_Burner_Spark by the function
Spark_Conversion. The_Burner_Spark is defined in terms of the spark type in the

Burner object manager.

25The notation used in Figure 4-5, Engine_System_Aggregate.Engines (An_Engine).The_Burner, is part of

the Engine Aggregate nomenclature discussed in Section 4.5.1.

30

CMU/SEI-88-TR-30

There are two reasons for managing type conversions within the connection procedure.
First, the object managers are then free from inter-object type dependencies. The object
managers become stand-alone, with no dependencies other than on global data types. Thus,
the object managers become reusable units. Separate development of the object managers is
also supported. The second reason is that each object manager has a different need. There is
no reason to expect that the Burner object manager would have a need to know how the
Ignition object manager maintains the spark state. For example, the spark from the
Ignition object manager may be in volts while the Burner maintains the value as an
enumerated type (see Figure 4-5).

4.4.2.3. Put Converted Information

The final step is to place the external environmental information on the object being up-
dated. The information must be in the proper type to match the dependent object. Once
again, a picture, like that in Figure 4-2, defines the destination for the environmental infor-
mation. The procedures Give_Spark_To, in Figure 4-5, and Give_Air_Flow_To, in Figure
4-6, are examples of put information operations.

4.4.3. Advantages of Connections
The implementation of connections in connecting procedures, as described in this chapter,
provides a consistent and natural interface to the objects.

The connections insulate the objects from compilation dependencies. Objects and systems
become stand-alone. Each can be developed independently. Connecting procedures provide a*
firewall: changes in implementation to objects on one side of a connection do not affect the
implementation of objects on the other side.

Connections facilitate independent development and reuse. In particular, connecting proce-
dures provide a systematic way to handle typing mismatches. The type conversions between
objects are easily managed since the connecting procedures have visibility into the objects.

Connecting procedures provide a consistent means of updating systems and objects. Thus,
connecting procedures provide a means for specifying control flow. No extraneous concepts
or operations are required.

Finally, the connecting procedures provide a locus of control since all connections at an ab-
straction level are handled in one place.

4.5. System Abstraction

To this point we have defined objects and the connections between them. This section dis-
cusses a method for grouping the objects and connections together into a logical scope.

A system is an aggregation of objects (and the connections between the objects) with a com-
mon goal. For example, the objects making up the Engine system provide thrust; the objects
of an Electrical system provide power. The system (objects and connections) is updated as a
single entity.

CMU/SEI-88-TR-30 31

Thus, a system presents two abstractions. The first is the aggregation of objects accessible
by name outside the system, as discussed below. The second is the set of connections be-
tween the objects of the system; these system level connections are not visible to the execu-
tive lev=l. The set of connections allows for an ordered update of the system as a unit.

A system update requires nothing more than gating the system level connections as de-
scribed in Section 4.4. Objects outside the system are not accessed during the system up-
date. The update is initiated by a procedure call from the executive to the system.

4.5.1. System Aggregates

A real-world system usually consists of collections of objects. An aggregate creates and
names a collection of objects. An aggregate is a data structure containing the name of each
object. Objects are accessed by name. A procedure call is not required to obtain a "pointer”
to an object being accessed.

4.5.1.1. Building an Aggregate

As was described in Section 4.1, an engine is a collection of objects, including the diffuser,
rotors, a burner, and so forth. Each object is managed by its own object manager. An engine
record can be constructed as a grouping of these objects (see the Engine_Representation in
Figure 4-7).

with Burner_Object_Manager;

with Bleed_Valve_Object_Manager;
with Diffuser_Object_Manager;

with Engine_Casing Object_Manager;
with Exhaust_Object_Manager;

with Fan_Duct_Object_Manager;
with Rotorl_Object_Manager;

with Rotor2_Object_Manager;

package Engine_System_Aggregate is

type Engine_Representation is
record

- Defines an engine representation as consisting of:
The_Diffuser : Diffuser_Object_Manager.Diffuser;
The_Rotorl : Rotorl_Object_Manager.Rotorl;
The_Fan_Duct :Fan_Duct_Object Manager.Fan_Duct;
The_Rotor2 : Rotor2_Object_Manager.Rotor2;
The_Bleed_Valve : Bleed_Valve_Object_Manager.Bleed_Valve;
The_Burner : Burner_Object_Manager.Burner;
The_Exhaust : Exhaust_Object_Manager. Exhaust;
The_Engine_Casing : Engine_Casing_Object_Manager.Engine_Casing;

end record ;

end Engine_System_Aggregate;

Figure 4-7: Engine Representation Example

For an aircraft as a whole there may be several engines. Using a constant array, an aggre-
gate of the engines can be created which stores references to Engine_Representations, one

32 CMU/SEI-88-TR-30

for each engine on the aircraft (see Figure 4-8). The constant array, Engines, is created at
elaboration time. Each object is instantiated by a call to the function New_<object>, de-
scribed in Section 4.3.3, with all initial conditions set by default. The pointer to the private
type returned by the function is stored with the name of the object. Thus, reference to the
object can be done by name. The aggregate data structure is visible so no procedure call is
required to retrieve an object. The array is indexed by the enumerated engine names
Engine_1..Engine_4. The engine names are defined in a global type package that defines
all the system names.

The constant array, Engines, is defined in a package specification to allow access to the
Engine system by an external system which withs the package and the appropriate object
managers. The aggregate and object managers are used by the connecting procedures, dis-
cussed in Section 4.4.3, to reference the necessary objects. All references to objects are done
through the aggregates. An object in an engine is referenced as:
Engines(Engine_Name).The_<object>
For example, the Diffuser of Engine 1 is referenced as:
Engines(Engine_1).The_Diffuser
and the Rotorl of Engine 3 is referenced as:
Engines(Engine_3).The_Rotorl

The code fragment, in Figure 4-6, shows how to reference an Engine object using the Engine
aggregate. The Discharge Air is read from the Diffuser object using the reference,
Engine_System_Aggregate.Engines (Given_Engine_Name).The_Diffuser and written
to the Rotorl object using the reference, Engine_System_Aggregate.Engines
(Given_Engine_Name).The_Rotorl.

4.5.2,. Updating

The existence of systems allows the processing of the enclosed objects to be done as a unit.
The process of updating a system occurs in two steps (Figure 4-10):

o the executive processes the executive level connections, see Section 4.6.1)
¢ the system processes the system level connections

The operations are done atomically for each system. This means that when it is time to
update a system, all work necessary to complete both steps of the update is finished before
the process is begun on another system.

Processing the executive level connections involves gating the connecting procedures, as de-
scribed in Section 4.4. The external effects, i.e., effects from objects external to the system
being updated, are placed on the system objects by the connecting procedures at the execu-
tive level.

Once all the external effects have been placed on the system objects, then the system level
update is initiated by a single procedure call, Update_<system_name>_System, to the sys-
tem.

CMU/SEI-88-TR-30 33

with Flight_System_Names;

with Burner_Object_Manager;

with Bleed_Valve_Object_Manager;
with Diffuser_Object_Manager;

with Engine_Casing_Object_Manager;
with Exhaust_Object_Manager;

with Fan_Duct_Object_Manager;
with Rotorl_Object_Manager;

with Rotor2_Object_Manager;

package Engine_System_Aggregate is

Engines : constant array (Flight_System_ Names.Aircraft_Engines) of
Engine_Representation :=
(Flight_System_Names.Engine_1 =>
(The_Diffuser => Diffuser_Object_Manager.New_Diffuser,
The_Rotorl => Rotorl_Object_Manager.New_Rotorl,
The_Fan_Duct =>Fan_Duct_Object Manager.New_Fan_Duct,
The_Rotor2 => Rotor2_Object_Manager.New_Rotor2,
The_Bleed_Valve => Bleed_Valve_Object_Manager.New_Bleed_Valve,
The_Burner => Burner_Object_Manager.New_Burner,
The_Exhaust => Exhaust_Object_Manager.New_Exhaust,
The_Engine_Casing =>
Engine_Casing_Object_Manager.New_Engine_Casing),

Flight_System_Names.Engine_2 =>
(The_Diffuser => Diffuser_Object_Manager.New_Diffuser,
The_Rotorl => Rotorl_Object_Manager.New_Rotorl,
The_Fan_Duct => Fan_Duct_Object_Manager.New_Fan_Duct,
The_Rotor2 => Rotor2_Object_Manager. New_Rotor2,
The_Bleed_Valve => Bleed_Valve_Object_Manager.New_Bleed_Valve,
The_Burner => Burner_Object_Manager.New_Burner,
The_Exhaust => Exhaust_Object_Manager.New_Exhaust,
The_Engine_Casing =>

Engine_Casing_Object_Manager.New_Engine_Casing),

Flight_System_Names.Engine_3 =>
(The_Diffuser => Diffuser_Object_Manager.New_Diffuser,
The_Rotorl => Rotorl_Object_Manager.New_Rotorl,
The_Fan_Duct => Fan_Duct_Object_Manager.New_Fan_Duct,
The_Rotor2 => Rotor2_Object_Manager.New_Rotor2,
The_Bleed_Valve => Bleed_Valve_Object_Manager.New_Bleed_Valve,
The_Burner => Burner_Object_Manager.New_Burner,
The_Exhaust => Exhaust_Object_Manager.New_Exhaust,
The_Engine_Casing =>

Engine_Casing_Object_Manager.New_Engine_Casing),

Flight_System_Names.Engine_4 =>
(The_Diffuser => Diffuser_Object_Manager.New_Diffuser,
The_Rotorl => Rotorl_Object_Manager.New_Rotorl,
The_Fan_Duct => Fan_Duct_Object_Manager.New_Fan_Duct,
The_Rotor2 => Rotor2_Object_Manager.New_Rotor2,
The_Bleed_Valve => Bleed_Valve_Object_Manager.New_Bleed_Valve,
The_Burner => Burner_Object_Manager.New_Burner,
The_Exhaust => Exhaust_Object_Manager.New_Exhaust,
The_Engine_Casing =>
Engine_Casing_Object_Manager New_Engine_Casing));
end Engine_System_Aggregate;

Figure 4-8: Engine Aggregate Example

For the Engine system example, the external connections which need to be processed are

34

CMU/SEI-88-TR-30

those from systems outside the Engine system, e.g., the Fuel system. These connections are
handled at the executive level. Then the Engine system is updated, via the procedure
Update_Engine_System (Figure 4-10). Performing the system level update involves proc-
essing the connections at the sysiem level. The connection representing the dependency of
the Rotorl on the Engine Casing ior air flow, temperature, and pressure is shown in
Figure 4-6. The update procedure is dependent on the Engine Aggregate and the object
managers.

4.5.3. Advantages of Systems

The implementation of systems, as described in this chapter, encapsulates objects and con-
nections within a logical scope. A system needs to access only its aggregated objects, the
global types used by the objects, and the system level connections.

This separation of concerns allows for several things:

e reduction of the impact of compilation dependencies. Systems become stand-
alone. Connecting procedures provide a firewall; changes in implementation to
objects in a system on one side of a connection do not affect the implementation
of objects in another system on the other side.

e separate development of components and reuse. Systems are self-contained.
The only dependencies are on global types and object managers.

e potentially easy disbursement within a multi-processor environment (more on
this in Section 6.1).

4.6. Executives

An executive is a community of systems. For example, the Flight Executive contains the
Engine system, the Electrical system, the Fuel system, etc. The executive controls the up-
dating of all the systems within its scope. The executive handles all connections between its
gystems, e.g., those between the Engine system and the Fuel system. In a multi-processing
environment, in this model, there would be one executive level per processor. The executive
would have access to buffers for communication between the processors. However, the
synchronization among the processors would happen outside the executive.?6

4.6.1. Implementation of an Executive

All the systems within the executive’s scope are known to the executive, as are all the objects
in those systems. The executive has an activity table,?” indexed by system names, which
defines a processing order for those systems. An implementation for use within a cyclic
executive is shown in Figure 4-9. The constant array, Its_Time_To_Do, defines the frame

26For this domain, in order to meet the required deterministic real-time schedule, Ada tasking is not a viable
solution. In our view, the executive functions like an abstraction of a CPU. The scheduler, that is shown in Figure
4-9, replaces the Ada tasking model at run-time.

%"The nature of the activity table is not a concern of the paradigm. More elegant and powerful implementations
are possible.

CMU/SEI-88-TR-30 35

with Global_Types;
with Flight_System_Names;

package body Flight_Executive is

type Active_In_Frame is
array (Flight_System_Names.Name_Of_A_Flight_System) of Boolean;

Its_Time_To_Do : constant array (Global_Types.Execution_Sequence) of
Active_In_Frame :=
(Global_Types.Frame_1_Modules_Are_Executed =>
(Flight_System_Names.Engine => (True), others => (False)),

Global_Types.Frame_2_Modules_Are_Executed =>
(Flight_System_Names.Electrical => (True), others => (False)),

Global_Types.Frame_3_Modules_Are_Executed => (others => (False)),
Global_Types.Frame_4_Modules_Are_Executed => (others => (False)),

Global_Types.Frame_5_Modules_Are_Executed =>
(Flight_System_Names.Engine => (True), others => (False)),

Global_Types.Frame_6_Modules_Are_Executed => (others => (False)),
Global_Types.Frame_7_Modules_Are_Executed => (others => (False)),
Global_Types.Frame_8_Modules_Are_Executed => (others => (False)));

end Flight_Executive;

Figure 4-9: Executive Activity Table Example

in which each system, e.g., the Engine system and the Electrical system, gets processed. The
processing is actually initiated by the procedure shown in Figure 4-10.

The updating of a system involves writing the external effects on the system and then telling
the system to update itself. These operations for the systems are done atomically. For
example, in Figure 4-10, when it is time to update the Engine system, a call is made to
Flight_Executive_Connections.Process_Engine_Connections_To. This procedure ac-
cesses the Engine objects directly, using the Engine aggregate, to write external effects onto
the Engine objects. Figure 4-5, page 29, shows such an executive level connecting procedure.
The fragment reads the spark from the Ignition object and writes the spark value to the
Burner object in the Engine system.

Next, the procedure Engine_System.Update_Engine_System is called to process the sys-
tem level connections. When this operation is finished, the Engine system update is com-
plete and the system is consistent with all its external effects.

4.6.2. Advantages of Executives

The implementation of executives described in this chapter follows the same model of connec-
tions used at the system level. Additionally, the executive has scheduling information in the
form of an activity table which defines an order for processing its systems. Using the activity
table, tuning of the simulator system by balancing the system processing across the frames
of the cyclic executive is simplified.

36 CMU/SEI-88-TR-30

with Flight_Executive_Connection_Manager;
with Flight_System_Names;

with Engine_System;
with Electrical_System;

package body Flight_Executive is

procedure Update_Flight_Executive (Frame : in
Global_Types.Execution_Sequence) is

begin
for A_Systemin Flight_System_Names Name_Of_A_Flight_System loop
if Its_Time_To_Do (Frame) (A_System) then
case A_Systemis

when Flight_System_Names. Electrical =>
Flight_Executive_Connection_Manager.
Process External_Connections_To_Electrical_System;
Electrical_System.Update_Electrical_System;

when Flight System_Names.Engine =>
Flight_Executive_Connection_Manager.
Process_External_Connections_To_Engine_System;
Engine_System.Update_Engine_System;
end case;
end if;

end loop;
end Update_Flight_Executive;

end Flight_Executive;

Figure 4-10: Flight Executive Example

Distributed processing can be handled easily by partitioning executives across the available
processors. More discussion of this topic is in Section 6.1.

4.7. Advantages of the Architecture of the Paradigm

The two main design goals for the paradigm were to eliminate unnecessarily layered objects
and to simplify dependencies among objects. Both goals have been met.

The solution does not contain nested objects and the software architecture is flat. Connect-
ing procedures provide the means of accessing objects for transferring state information. The
connections at the executive level can access all objects, in the systems under the scope of the
executive. Objects are accessed by name through the data structures which aggregate ob-
jects for each system. A procedure call is not required to obtain a "pointer” to the object
being accessed. We assert that the solution is natural. A spark goes to a burner, not to an
engine.

The abstraction of higher-level objects, such as engines, is captured in the notion of a system:
a set of objects updated as an entity. The benefits of nested objects are retained, i.e., high-

CMU/SEI-88-TR-30 37

level objects can be updated and reused as a single entity. This abstraction coupled with the
approach to processing connections facilitates multiprocessing. Placing a set of systems on a
separate processor requires only creating an executive for the processor and making minor
changes to the executive level connections for the processor. None of the system level code
changes.

The major difference between this paradigm and other object-oriented paradigms is the use
of connecting procedures to transfer information. Connecting procedures allow objects and
systems to stand-alone. Each can be developed independently. Connecting procedures pro-
vide a firewall: changes in implementation to objects on one side of a connection do not affect
the implementation of objects on the other side.

Connecting procedures facilitate both independent development and reuse. In particular,
connecting procedures provide a systematic way to handle typing mismatches. It is desir-
able, but not always possible, for two connected objects to use the same types to commu-
nicate.

The software partitioning of connecting procedures simplifies compilation dependencies. All
access to objects happens through connecting procedures. Thus, it is only the procedures
managing connections to a system that need to be recompiled if an object manager specifi-
cation changes. Each of these connecting procedures can be implemented as a separate proce-
dure; in the Ada sense.

Connecting procedures provide a consistent means of updating systems and objects. Thus,
connecting procedures provide a means for specifying control flow. No extraneous concepts
or operations are required.

something

Object A Object B

Figure 4-11: Object Dependency Example

Figure 4-11 illustrates some of the flexibility of connections.28 Object B provides object A

28Figure 4-11 is the same as Figure 2-1.

38 CMU/SEI-88-TR-30

with something, i.e., a connection exists, as shown, between A and B. Assume that A and B
are in the same system.

1.If B needs, or is coded with, a different type of something than A, then the
connection procedure converts the type.

2. If B moves to a different system, then the ownership of the connection is
changed (from system level to executive level).

3. If B moves to a different processor, then connect the tail of the connection arrow
to a "buffer" representing the other processor (See Section 6.1 for more
information.)

4. If B %eeds to be stubbed, then the connecting procedure can be used as the
stub.

The paradigm produces software that is easy to modify. Typical modifications include ad-
justing the distribution of processing among the frames of a cyclic executive, adding malfunc-
tions, adding or removing objects, and modeling wear and aging of components. Examples of
some of the potential modifications are:

1. Moving the update of a system to a different frame requires a change only in
the executive’s schedule table

2. Adjusting the air flow, for one of the systems which uses air flow, can be done in
a connecting procedure without worrying about side-effects in the other systems

3. Adding a malfunction to an engine component, the Burner for example, re-
quires only the following:

a. making the malfunction selectable at the Instructor Operator Station
(10S) ‘

b. adding a connection from the I0S buffer to the Burner
c. changing the model of the Burner.

4. Adding a third compressor stage to the engine will not disturb the major math
models of the engine. It requires only creating the object in software and add-
ing connections to the object from the Engine Casing object

5. Modeling wear on a Rotor bearing requires adding the interface
Time_Has_Passed (Amount: Time) to the object, making a small change to
the private type, and reducing the efficiency of the Rotor in proportion to its
time in service :

6. Adding a system to an executive requires creating the system, its connection
and aggregate packages, and the objects necessary to describe the system. The
system’s objects need to be accessible by the executive’s connection package, see
Figure 3-5, and the system itself needs to be included in the schedule table and
update procedure of the executive. The software architecture tends to grow out
(or flat) not down.

2This technique is used consistently throughout the Engine code in Appendix C. The examples used in this
chapter, for example Figure 4-5 which shows a connection to the Ignition object manager, were constructed for
illustrative purposes only.

CMU/SEI-88-TR-30 39

40

CMU/SEI-88-TR-30

5. Development Process

5.1. Role of the Paradigm

The development of systems using the paradigm is a design activity. The paradigm molds
the designer’s analysis of the requirements. The paradigm accommodates objects and con-
nections. The result of the analysis of the requirements is a set of real-world objects and
connections grouped into systems. Once this choice is made, the paradigm dictates the im-
plementation.

The paradigm can be viewed as a means of consistently specifying objects, connections, sys-
tems, and executives. The result is a consistent implementation. Maintainers do not need to
learn the architecture of each system. If the paradigm is followed, all systems will look the
same,

During acquisition, the architecture of each system does not need to be evaluated. The
quality of the architecture that follows from the paradigm needs to be evaluated only once.
Design reviews can focus on the analysis of requirements, the choice of objects and connec-
tions, and system groupings.

5.2. Templates and Reuse

The object diagram, Figure 4-2, used four icons to describe the Engine system. Objects are
represented by rectangles, connections between objects by arrowed lines, roundtangles are
systems, and executives are defined by an irregular shape outlined in gray. Software sys-
tems of flight simulators can be defined in terms of these four icons.

The software architecture, Figure 3-5, can be derived mechém’cally from the object diagram.
Each of the four icons is associated with its own set of one or more software package
templates. Relationships among the software package templates are homomorphic to the
relationships among the icons of the object diagram.3°

30Homomorphic means "the same in meaning yet shown with a different structure”.

CMU/SEI-88-TR-30 41

with Standard_Engineering Types;
package <Object>_Object_Manager is

package Setrenames Standard_Engineering_Types;
type <Object> is private ;

type <Attribute_2> is 77;

type <Attribute_1>is 7?;

function New_<Object> return <Object>;
“l..................Q.....................................i.......i
--| Description:

--| This function returns a pointer to a new <object> object

| representation. This pointer will be used to identify

--| the object for state update and state reporting purposes.

-1

-| Parameter Description:

--| return <object> which is an access to a <object> object.
__|.........0...00.....0....O..OQQ.......0......0.............0...0.

procedure Give_<State_1>_To (A_<Object> : in <Object>;
Given_<Input>_<Type_1> : in Set.<Type_1>;
Given_c<Input>_<Type_2> : in Set.<Type_2>;
Given_<Input>_<Type_3> : in Set.<Type_3>);

“|.......&%..0..........Q............i...........‘......O.....Q.’..

--| Description:

-| Initiates a change in the specified <object> object’s

--| state given the <input>_<type_1>, <input>_<type_2>,

—-| andthe <input>_<type_3>.

-1

--| Parameter Description:

-1 A_<object> identifies the <object> whose state is to be changed.

-| Given_<input>_<type_l> is the <input> <type_I>, in ?units

- | Given_<input>_<type_2> is the <input> <type_2>, in ??units

-1 Given_<input>_<type_3> is the <input> air flow, in ?funits

oo | RABRARRRRERRRRIIRARGRREIRRIRRREERRRGERRRRIRRRRIRRRGRRRRERIRRRGRR RS

pragma Inline (Give_<State_1>_To);
private

type <Object>_Representation;

-- incomplete type, defined in package body

type <Object> is access <Object>_Representation;
-- pointer to an <object> representation

end <Object>_Object_Manager;

Figure 5-1: Object Manager Template Example

The templates contain the general features of the component, with place-holders for the spe-
cific features. Appendix B contains a complete object template. The template uses the nota-
tion <object> as a place-holder for the name of the object. The notation <attribute_x> is
used for expression of operational state variables and attributes. The object operations are
expressed in similar terms (See Figure 5-1).

The templates are not intended to contain all the necessary details for generating a complete
version of the code. They are intended as a starting point. The framework for each object
manager, system update package, connection package, and system aggregate is similar. The

42 CMU/SEI-88-TR-30

details are different. Package bodies and subprogram bodies are provided within the
templates. The implementor provides details within a template’s framework. The resulting
components will have a similar look and structure. This will aid readability, understanding,
and maintenance.

5.2.1. Diagram Parsers
Several commercial tools have the capability of parsing diagrams and generating code
templates to varying levels of detail. The detail is limited by the diagram notation.

The object diagram, Figure 4-2, is typical of a diagram for which a parser could be written.
The parser could generate the templates discussed earlier. We view this as a natural exten-
sion of the paradigm toward a more automated solution.

5.3. Enhancements to Object Diagrams

The notation used on the object diagram, Figure 4-2, reflects the dependencies betwe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>